Roll No.:

320833(20)

B. E. (Eighth Semester) Examination, April-May 2021

(New Scheme)

(Civil Engg. Branch)

STRUCTURAL ANALYSIS-III

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any one question part from (b) and (c) of each question.

Unit-I

1. (a) Write assumptions of portal method.

2

(b) Determine the reactions at the base of the columns for the frame shown in fig. below by portal method.

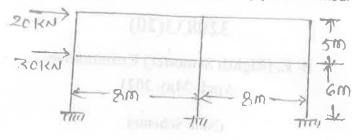


Fig.-1

(c) Solve the same frames as in prob. 1 (b) using cantilever method.

Unit-Il

- **2.** (a) Explain the term "flexibility" what are the properties of a flexibility matrix.
 - (b) Analysis the continuous beam as shown below for constant flexural rigidity "EI" by flexibility matrix method.

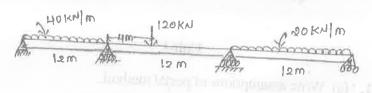
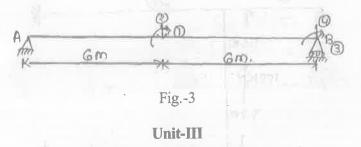
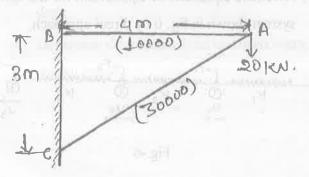
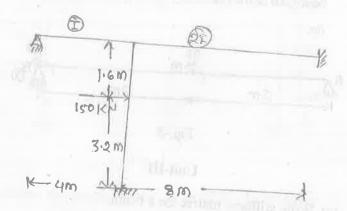



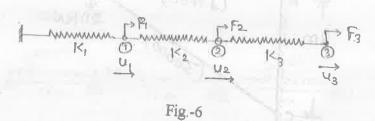
Fig.-2

320833(20)

(c) Develop flexibility matrix for a simply supported beam AB with reference to coordinates shown in fig.

- 3. (a) Write stiffness matrix for a beam.
 - (b) Fig. shows a jib crane carrying vertical load of 10 k N at A. Find the displacement of joint A. Calculate forces in members AB & AC. The numbers in parentheses are the Cross-sectional area of the member in mm². Take $E = 200 \text{ kN/mm}^2$.


Fig.-4
320833(20)

In hard mattery gulden Fig. 5 per all or severed and (1)

and the second of the late of the second of

- 4. (a) What is shape function?
 - (b) Assemble equations of equilibrium for the spring system shown in fig. 6 by direct approach.

(c) Analysis the beam as shown in fig. using FEM techniques. Determine the rotations at the supports. Given E = 200 GPa and $I = 5 \times 10^6$ mm⁴.

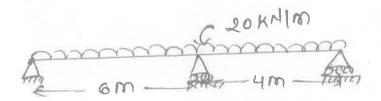


Fig.-7

Unit-V

- 5. (a) State upper bound theorem.
 - (b) Prove that the zone of yielding due to flexure is one third of span of a simply supported beam?
 - (c) (i) Show that plastic hinge is equal to one third of span.
 - (ii) Determine the collapse load in a fixed beam as shown below.